\bold{\mathrm{Basic}} \bold{\alpha\beta\gamma} \bold{\mathrm{AB\Gamma}} \bold{\sin\cos} \bold{\ge\div\rightarrow} \bold{\overline{x}\space\mathbb{C}\forall} \bold{\sum\space\int\space\product} \bold{\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}} \bold{H_{2}O} \square^{2} x^{\square} \sqrt{\square} \nthroot[\msquare]{\square} \frac{\msquare}{\msquare} \log_{\msquare} \pi \theta \infty \int \frac{d}{dx} \ge \le \cdot \div x^{\circ} \square \square f\\circ\g fx \ln e^{\square} \left\square\right^{'} \frac{\partial}{\partial x} \int_{\msquare}^{\msquare} \lim \sum \sin \cos \tan \cot \csc \sec \alpha \beta \gamma \delta \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega A B \Gamma \Delta E Z H \Theta K \Lambda M N \Xi \Pi P \Sigma T \Upsilon \Phi X \Psi \Omega \sin \cos \tan \cot \sec \csc \sinh \cosh \tanh \coth \sech \arcsin \arccos \arctan \arccot \arcsec \arccsc \arcsinh \arccosh \arctanh \arccoth \arcsech \begin{cases}\square\\\square\end{cases} \begin{cases}\square\\\square\\\square\end{cases} = \ne \div \cdot \times \le \ge \square [\square] ▭\\longdivision{▭} \times \twostack{▭}{▭} + \twostack{▭}{▭} - \twostack{▭}{▭} \square! x^{\circ} \rightarrow \lfloor\square\rfloor \lceil\square\rceil \overline{\square} \vec{\square} \in \forall \notin \exist \mathbb{R} \mathbb{C} \mathbb{N} \mathbb{Z} \emptyset \vee \wedge \neg \oplus \cap \cup \square^{c} \subset \subsete \superset \supersete \int \int\int \int\int\int \int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square} \int_{\square}^{\square}\int_{\square}^{\square}\int_{\square}^{\square} \sum \prod \lim \lim _{x\to \infty } \lim _{x\to 0+} \lim _{x\to 0-} \frac{d}{dx} \frac{d^2}{dx^2} \left\square\right^{'} \left\square\right^{''} \frac{\partial}{\partial x} 2\times2 2\times3 3\times3 3\times2 4\times2 4\times3 4\times4 3\times4 2\times4 5\times5 1\times2 1\times3 1\times4 1\times5 1\times6 2\times1 3\times1 4\times1 5\times1 6\times1 7\times1 \mathrm{Radianas} \mathrm{Graus} \square! % \mathrm{limpar} \arcsin \sin \sqrt{\square} 7 8 9 \div \arccos \cos \ln 4 5 6 \times \arctan \tan \log 1 2 3 - \pi e x^{\square} 0 . \bold{=} + Inscreva-se para verificar sua resposta Fazer upgrade Faça login para salvar notas Iniciar sessão Mostrar passos Reta numérica Exemplos \int e^x\cosxdx \int \cos^3x\sin xdx \int \frac{2x+1}{x+5^3} \int_{0}^{\pi}\sinxdx \int_{a}^{b} x^2dx \int_{0}^{2\pi}\cos^2\thetad\theta fração\parcial\\int_{0}^{1} \frac{32}{x^{2}-64}dx substituição\\int\frac{e^{x}}{e^{x}+e^{-x}}dx,\u=e^{x} Mostrar mais Descrição Integrar funções passo a passo integral-calculator pt Postagens de blog relacionadas ao Symbolab Advanced Math Solutions – Integral Calculator, the complete guide We’ve covered quite a few integration techniques, some are straightforward, some are more challenging, but finding... Read More Digite um problema Salve no caderno! Iniciar sessão
Theintegral of cos (x) is equal to sin (x). We can check this by differentiating sin (x), which does indeed give cos (x). Finally, as with all integration without limits, there must be a constant added, which I'll call c. So the final answer is. ∫ x sin (x) dx = -x cos (x) + sin (x) + c. Answered by Shaun F. • Maths tutor. This integral is mostly about clever rewriting of your functions. As a rule of thumb, if the power is even, we use the double angle formula. The double angle formula says sin^2theta=1/21-cos2theta If we split up our integral like this, int\ sin^2x*sin^2x\ dx We can use the double angle formula twice int\ 1/21-cos2x*1/21-cos2x\ dx Both parts are the same, so we can just put it as a square int\ 1/21-cos2x^2\ dx Expanding, we get int\ 1/41-2cos2x+cos^22x\ dx We can then use the other double angle formula cos^2theta=1/21+cos2theta to rewrite the last term as follows 1/4int\ 1-2cos2x+1/21+cos4x\ dx= =1/4int\ 1\ dx-int\ 2cos2x\ dx+1/2int\ 1+cos4x\ dx= =1/4x-int\ 2cos2x\ dx+1/2x+int\ cos4x\ dx I will call the left integral in the parenthesis Integral 1, and the right on Integral 2. Integral 1 int\ 2cos2x\ dx Looking at the integral, we have the derivative of the inside, 2 outside of the function, and this should immediately ring a bell that you should use u-substitution. If we let u=2x, the derivative becomes 2, so we divide through by 2 to integrate with respect to u int\ cancel2cosu/cancel2\ du int\ cosu\ du=sinu=sin2x Integral 2 int\ cos4x\ dx It's not as obvious here, but we can also use u-substitution here. We can let u=4x, and the derivative will be 4 1/4int\ cosu\ dx=1/4sinu=1/4sin4x Completing the original integral Now that we know Integral 1 and Integral 2, we can plug them back into our original expression to get the final answer 1/4x-sin2x+1/2x+1/4sin4x+C= =1/4x-sin2x+1/2x+1/8sin4x+C= =1/4x-1/4sin2x+1/8x+1/32sin4x+C= =3/8x-1/4sin2x+1/32sin4x+C Contohsoal integral tak tentu beserta dengan jawabannya dijelaskan secara rinci dan lengkap. &= \int{f(x)} dx \\ &= \int{3x^{5}} dx \\ &= \frac{3}{5+1} x^{5+1} + C \\ &= \frac{3}{6} x^{6} + C \\ &= \frac{1}{3} x^{6} + C \end{aligned}\) Gampang kan? Selanjutnya aku gak akan menguraikan dengan cara definisi, aku anggap kamu udah paham The answer is =-1/5cos^5x+2/3cos^3x-cosx+C Explanation We need sin^2x+cos^2x=1 The integral is intsin^5dx=int1-cos^2x^2sinxdx Perform the substitution u=cosx, =>, du=-sinxdx Therefore, intsin^5dx=-int1-u^2^2du =-int1-2u^2+u^4du =-intu^4du+2intu^2du-intdu =-u^5/5+2u^3/3-u =-1/5cos^5x+2/3cos^3x-cosx+C